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Multimodal Variational Analysis of Uniaxial
Waveguide Discontinuities

Jun-Wu Tao, Member, IEEE, and Henri Baudrand, Senior Member, IEEE

Abstract —A unified multimodal variational formulation is described

for the characterization of uniaxial waveguide discontinuities. A varia-

tional form is obtained by using a self-a~oint susceptance operator
which is defined in terms of two eigenmode sets corres~onding to the two
constituent waveguides. By making use of the similarity between the field

and network theory, the final admittance matrix will be of small size
owing to the use of the “accessible” and “localized” modes. This
formulation leads to an appreciable reduction in the computation time
and computer memory space and facilitates in this way the use of the

optimization process on personal computers and workstations. Exam-
ples are given for both homogeneous and inhomogeneous waveguide

discontinuity problems, showing good agreement with the experiments.
An evanescent-mode ridge-waveguide filter has been designed on this

theoretical basis with success.

I. INTRODUCTION

sTUDIES of discontinuity problems in waveguides are
particularly important for the design of a number of

microwave components. It is essential to be able to predict
with accuracy the frequency-dependent behavior of these
devices, especially concerning the discontinuities involved.
This necessity derives from the increasing difficulty of post-
manufacture adjustments in the millimeter-wave range, where
one can hardly introduce tuning posts or screws in the
metallic waveguide structure, and the modification of many
microwave integrated circuits (MIC) structures is simply not
possible.

A typical discontinuity problem often encountered in the
design of phase shifters, impedance transformers, and filter
structures is the uniaxial discontinuity. The variational na-
ture of the formulation was the main concern of the first
contributors to field and network theory and still attracts
attention today. In the early’ work of Schwinger and his
colleagues, which has been reported by Marcuvitz [I] and
also in the standard textbook of Collin [2], stationary solu-
tions were proposed for the equivalent circuit elements of
isolated discontinuities, either by simple variational methods
or by quasi-static methods. The results are fairly accurate
below a certain frequency limit. Close-form expressions have
even been derived for some discontinuity problems in the
q~asi-static case. Application of these methods has been
extended to the discontinuity problems for which analytical
expressions of the propagation characteristics do not exist,
such as discontinuities in finned and ridge waveguides [3]–[5].
For the characterization of interacting discontinuities, many
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computer-oriented methods propose the modal expansion of
trial fields on two finite sets of eigenmodes, each correspond-
ing to a constituent waveguide; the inversion of the resulting
matrix equation leads to the scattering matrix for the discon-
tinuity considered [6]. This straightforward mode-matching
technique has been applied to a large number of discontinu-
ity problems for which the constituent waveguides are either
homogeneous or inhomogeneous [7]-[17]. Proper conver-
gence is not always ensured with the increasing order of
double modal expansions as invoked by Mittra et al. [181, and
the matrix treatment generally requires mainframe computer
power. More analytical methods, such as the modified residue
calculus technique [19], do not suffer from the relative con-
vergence phenomenon and provide accurate results. Unfor-
tunately, only limited applications, often with only .x-direc-
tion discontinuities, are available in the literature [20]-[22].
Some studies have been carried out by an extended spectral-
domain method, as in [231.

In his studies of interacting irises and steps in a homoge=
neous uniform waveguide [24]–[261, Rozzi has developed the
variational method described by Collin [2] and has extended
it to more than one interacting discontinuity. By making use
of the similarity between eigenmodes and transmission lines
and by examining the behavior of higher order eigenmodes
in the neighborhood of discontinuities, he has introduced the
notion of “accessible” and “localized” modes. A stationary
expression for the reactance matrix corresponding to “acces-
sible modes” has been obtained which requires manipula-
tions with small-order matrices only. The same process has
been applied to the step discont@uities in planar dielectric
waveguides [27] -[28] and in microstrip [29].

In this paper, we propose a unified multimodal variational
formulation for uniaxial discontinuity problems. This formu-

lation, already applied to homogeneous discontinuity prob-
lems [30] -[33], has been extended to the in homogeneous
case. The discontinuities are assumed lossless and reciprocal,
so a self-adjoint susceptance operator can be defined at the
transverse discontinuity plane, which relates the arithmetic
sum of the transverse magnetic field to the aperture (non-
metallic part of the cross section) electrie field, which will be
the only unknown in the resultant stationary expression. The
aperture field is then expanded in terms of an appropriate
eigenfunction set which should satisfy the boundary condi-
tions. The corresponding admittance matrix of the disconti-
nuity is then obtained by applying the nontrivial solution
condition and by making use of the similarity between field
theory and network theory.

If no distinction is made between the accessible and local-
ized modes as described by Rozzi [24] -[26], [29], the admit-
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, tance matrix will be of infinite order since all higher order
modes will correspond to an “accessible port.” By appropri-
ately introducing this notion in the self-adjoint susceptance
operator formulation, we obtain separately the accessible
part and the localized part. The admittance matrix obtained
in this way then corresponds to the accessible modes and is
of small size. Only one matrix needs to be inverted, and the
dimensions of this matrix depend on the aperture field
expansion and may be of moderate size owing to the station-
ary nature of this formulation. Furthermore, this matrix
presents the influence of the localized modes in infinite
series form. The convergence of these series may be acceler-
ated by an appropriate transform such as that of Schwinger..— ——

As the resultant admittance matrix is often of small size,
depending only on the coupling between adjacent discon-
tinuities, this formulation is suitable for integration in a
microcomputer- or workstation-based computer-aided-
design package for predicting the behavior of multiple dis-
continuities, especially when the overall scattering para-
meters will be optimized in microwave device design
procedures. Analysis has been carried out for finned and
ridged waveguide discontinuities, as well as for dielectric-
loaded waveguide discontinuities. Very good agreement has
been observed between the predicted and measured results
for both the homogeneous and inhomogeneous cases. An
optimization design program has been developed on an IBM
personnel computer by making use of this formulation. An
evanescent-mode ridged waveguide low-pass filter has been
designed in reasonable computation time and provides very
good performance.

In the following section, we will first describe the unified
multimodal variational formulation for the general case. Spe-
cial consideration will then be given to completely isolated
discontinuities and infinitely thin obstacles, as well as to two
interacting discontinuities with z-direction symmetry, Appli-
cation of this formulation will be demonstrated by practical
studies.

II. MULTIMODAL VARIATIONAL FORMULATION

According to Barrington’s “mode function,” “mode volt-
age,” and “mode current” concepts [34], the network expres-
sions for transverse E and H fields in a reciprocal waveguide
are given by

E(x, y,zo) = x~n(zo)q~)y) (la)

J(x, Y;zo)=iin(zo)Jn( x, Y). (lb)
n

Here Un(zo) and in(zo) correspond respectively to the sum
and difference of incident and reflected wave amplitudes of
the nth eigenmode at the reference plane Zo. The modal
surface current density vector Jn is related to H. by

Jn=Hnxz (2)

z being the direction of propagation. Boldface italic letters
are used for space vectors. The orthogonality relation for
z-independent mode functions is given by

(3)

bnm being the Kronecker delta and Nn taking the values of 1,
j, or – j, depending on whether the nth eigenmode is
propagating or evanescent with capacitive or inductive be-
havior. J.* denotes the complex conjugate of Jn. The inner
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Fig. 1. Uniaxial waveguide discontinuity.

dot product in (3) replaces the classical vector product due to
the definition of J.

A normalized admittance coefficient Y.(zo) can be intro-
duced at the reference plane so that

in(zo) = yn(zo)un(zo). (4)

By defining the eigenmode admittance operator ~n as below,

?nF=J.(Jn, F)/N. =( J./Nn)j(J$”F)dS (5)

we can extract the expansion coefficient u. by applying ~n to

(la) and introducing it into (lb) via relation (4). The trans-
verse E and H fields are then related by the following
expression:

()
J= ~Yn~’ E=ti. (6)

n

~ is defined as the admittance operator associated with a
reciprocal waveguide.

In a uniaxial waveguide discontinuity problem of the type
shown in Fig. 1, owing to the possible interaction with the
neighboring discontinuities, both first and higher order
eigenmodes can be incident at each side of the discontinuity
plane, and the relation (6) holds for both waveguides. The
arithmetic sum of surface current densities will be zero in
the aperture (the nonmetallic part of the cross section)
according to the continuity relation of the transverse H field,
since the incidence is assumed to be along the negative z
direction in the right-hand waveguide. By making use of th:
transverse E field continuity, the admittance operator Y
associated with the discontinuity problem will simply be the
sum of two admittance operators associated with each wave-
guide, and the following relation holds in the aperture re-
gion:

ti=o (7)

with ~ given by the following relationship:

f = ~ yjl).~(o + ~ y}m~(z), (8)
i j

When the accessible port: are Jerpinated by purely reac-
tive admittances, we have Y = JB, B being the self-adjoint
susceptance operator, The associated stationary expression
will be given by

f =( E,l$E). (9)

The aperture field E can be expanded over an appropriate
eigenfunction basis G = {g.} which s#isfies the boundary
conditions. The susceptagce operator B k then expressed by

a corresponding matrix ~ with a general term in the follow-
ing form:

(E)mn =(gn,l$gm). (lo)
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Behavior of accessible and localized modes in the vicinity of
discontinuities and equivalent network representation.

The minimization of (9) leads to the following homogeneous
equation:

~Bmnvn = O (11)
n

v~ being the nth expansion coefficient of the trial field E in
the basis {gn}.

When a higher order eigenmode, well below cutoff, is
considered localized, no significant incidence will be ob-
served, as shown in Fig. 2. The corresponding mode excited
by the adjacent discontinuity is completely attenuated before
reaching the discontinuity plane considered; the reduced
admittance coefficient can then be taken as (–1) according
to(4). Byseparating all localized modes from the accessible
ones, the susceptance operator is reformulated and the cor-
responding matrix elements can be rewritten as

%.= in%,t(’)gn)+f y}’)(gm,~(z)gn)

i-l j+

- E %??jt%n)- i’ (gm,~(’k). (12)
i=L+l j=K+l

By defining the following matrices:

(((a)mn=(+gm, ))~ p+ j ip g. (13)
i=L+l j= K-tl

(~(v))~~=kt,J!’)),z=l,Z””LorK (14)

(11) can be reorganized as

\v=l / 1:1
~~~g is the diagonal susceptance m~trix with the nth diago-

nal element corresponding to y:). N(’) is also diagonal with
diagonal elements corresponding to the normalization con-
stants given (3). A vector ~ depending only on the accessible
modes can be defined by means of the following relationship:

(16)

and the following homogeneous equation of order L+K
holds:

(17)

,(X1 1.x12) ,@22.x12) J(xll-x12) J@ll-x12)

:-, :~:, :qF”,

(a) (b) (C)

Fig. 3. Particular cases and their equivalent circuits: (a) isolated junc-
tion; (b) thin obstacle; (c) thick obstacle.

where

and ~ is the unit matrix. The no@r&ia~soluti~ns of (17) can

be obtained only by equatinglj~. ~- l~di,g + ~1 to zero. On
the other hand, by making use of (4), we can define the
discontinuity admittance matrix “visible” to the adjacent
discontinuities so that

The nontrivial solution of (19) requires that the determinant

IF – ~di,gl = O and one can then identify the admittance—. —
matrix Y as well as the impedance matrix ~ corresponding
to the accessible ports:

————
~= –jI’. N-l. (20)

The corresponding scattering matrix, if needed, can be de-
rived according to many standard textbooks, for instance that
of Barrington [34].

When a multiple discontinuity problem is considered, we
can transform the global boundary problem to the network
problem corresponding to a series of cascaded networks. The
accuracy of individual discontinuity solution depends only on
the trial aperture field expansion, regardless of the number
of accessible modes, whereas the accuracy of the overall
characteristics depends strongly on this number. For a uni-
form waveguide of given length L which relates two adjacent
discontinuities, the number of modes accessible to both
discontinuities will be determined from the attenuation coef-
ficients e ‘an~.

In some special cases where the discontinuities can be
considered fairly” isolated,” the accessible mode number will
be determined according to their equivalent circuits, as dis-
cussed below. ...

III. PARTICULAR CASES

A. Isolated Discontinuities (Fig. 3(a))

The equivalent network problem will be one-port or two-
port, depending on whether both waveguides are propagat-
ing or not, Considering first the two-port case, we have

(21)
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Fig. 4. (a) Double ridged waveguide-empty waveguide discontinuity and its equivalent circuit [1]. (b) Equivalent circuit
elements versus aperture field expansion number N2 (N 1 = 70). (c) Equivalent circuit elements versus empty waveguide
eigenmodes number N1 (N2 = 35).

with

@=(g1g2g3. .$gp .,$).

We can see that ~ is symmetric owing to the symmetry of ~,
This verifies the reciprocity property assumed at the begin=

ning, Moreover, ifallhigher order modes are below cutoff, Z
will be purely imaginary.

~(2J will be an empty matrix for the one-port case so that
thediscontinuity will be characterized only by its equivalent
impedance jx 1~, assuming, with no loss of generality, that the
right-hand waveguide is below cutoff. The classical stationary
expression of [5]maybe found bysetting{E!$2)}as eigenfun~

tions and by considering only the first incident mode since ~
is then a diagonal matrix,

B. Infinitely Thin Obstacle (Fig. 3(b))

Any infinitely thin obstacle will be characterized only by a
shunt impedance ( jx) as shown Fig. 3(b). In fact, as the
left-hand and right-hand waveguides are identical, we obtain
from (21) that x, ~= X22 = x,2 = x. The network equation is
then satisfied.

C. Thick Obstacle (Fig. 3(c))

When the discontinuity problem has geometrical symme-
t~, the solution can be split into even and odd parts by
introducing respectively a magnetic and an electric wall at
the symmetry plane, as described for the thick iris resolution
by Collin [2] and Rozzi [24]-[26] respectively. The internal
ports are, by definition, not accessible, but the eigenmodes
cannot be considered localized as described above owing to
the presence of the magnetic or electric walls at a nonnegli-
gible distance, When these walls are introduced, the even
and odd solutions for the reduced driving point impedances

jx~”~” and jxO&I will be obtained in a manner similar to that
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Fig. 5. (a) Ridged waveguide-empty waveguide discontinuity with different housing and its equivalent circuit [11. (b)
Equivalent circuit elements versus aperture field expansion number N2 (Nl = 90). (c) Equivalent circuit elements versus
empty waveguide eigenmodes number N1 (N2 = 35),

TABLE I
COMPARISONOF MATRIX OPERATIONSREQUIRED FOR EACH TECHNIQUE

Mode-Matching [14] Multimodal Variational

Matrix Inversions (N, N) c (M, M) R, (n+m, n+rn)c

Matrix (N, N)x(N, N) c (M, N-n)x(N–n, M)
Multiplications (N, N)x(N, M),(M, N)x(N, N) C (n, kf)X(M, M)

R
R

04,N)x(N,W c (n, M)x(M, n)
(M, N)x(N, M)

R
c (n+rn)x(n+m) c

C—complex matr@ R—real matr~ n, m —numbers of accessible modes.

in the one-port isolated case simply by replacing the local- IV. PRACTICAL APPLICATIONS

ized admittance coefficient ( – 1) with respectively

– j” cot (P.~) and j” tan(&~), According to [2], the resul-
In this section, the multimodal variational formulation will

tant two-port network is then characterized by
be applied to both homogeneous and inhomogeneous discon-
tinuity problems. The ridged rectanrmlar waveguide disconti-

@ll = jx22= j(xeven+ ‘odd)/2
nuities will be characteri~ed by th~ir equivalent circuit and
scattering parameters, as will the dielectric-filled waveguide

jxlz = j(~~,~ – ~O&)\2. (22) discontinuities,
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Fig. 10.
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(a) Evanescent-mode ridged waveguide low-pass filter. (b) Measured and calculated reflection coefficient.
(Continued on next page)

The propagation constants and the corresponding normal-
ized field distribution -are determined by applying rigorous
analysis methods, the generalized transverse resonance
method for the ridged waveguide analysis [35]-[37], and a
transfer matrix formulation for the dielectric-loaded wave-
guide [38]. An accurate definition of field components is very
important during the individual discontinuity characteriza-
tion, which depends only on the aperture field expansion, as
noted above. Although (9) is stationary in this field, a good
choice of basis functions, one which approaches as closely as
possible the real field distribution, will ensure faster conver-

gence, When no better basis is available, the eigenmodes
corresponding to the waveguide whose cross section coin-
cides with the aperture are used, For this reason, the aper-
ture field expansion of a ridged waveguide-empty waveguide
junction is taken over the ridged waveguide eigenmodes
basis.

First of all, the convergence test is carried out through the
examples of discontinuities between the rectangular wave-
guide and the ridged waveguide. When no step of waveguide
housing exists, as shown in Fig. 4(a), the equivalent circuit
elements have been evaluated by varying the number of
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Fig. 10 (Continued). (c) Measured andcalculated transmission coefficient.

aperture expansion fields (Fig. 4(b)) and the number of
empty waveguide eigenmodes (Fig. 4(c)). Different ridge
heights have been used here and one can see the influence
of the singularity at the metallic wedge. When the spacing
between ricjge:, is relatively large, the wedge phenomenon is
less evident and only ten expansion terms of the aperture
field and 40 eigkmrnodes in the empty waveguide are suffi-
cient; in contrast, when this phenomenon becomes evident
with small spaciri,$; respectively 30 and 60 terms are needed.
In both the small and the large spacing cases, the shunt
capacitance and the transformer ratio vary uniformly with
the increase of expansion terms. The discontinuity can then
be considered “well behaved.”

The housing step case is also treated with different step
ratios (Fig. 5). We can i$ee the well-known “relative conver-
gence phenomenon” from parts (b) and (c) of the figure
when the difference is great between the housing of the
empty waveguide, and that of ridged waveguide, by varying
either the number of aperture field expansion terms or the
number of empty waveguide eigenmodes. Generally speak-
ing, more eigenmodks are needed for convergence in the
double step housing case than in the nonstep case. This is
why Bornemann et al. [10] did not judge it necessa~ for their
study to increase the localized mode number since their
discontinuity problem, taken as an example here, is a well-
behaved one according to Fig. 4.

When the same numbers of accessible and localized modes
are used, .the multimodal variational formulation and the
classical mode-matching method provide identical results, as
noted in a previous paper [30]. However, by treating these
two groups of modes differently as described above, the
computation time, is considerably reduced. For a lossless
boundary-reduction discontinuity, the details of matrix oper-

ations required for both the mode-matching technique [14]
and our formulation are shown in Table I, assuming that the
aperture field expansion is taken over the basis of the
eigenmodes of the right-hand waveguide. The ratio N/M, N
and M being, respectively, the numbers of eigenmodes taken
in the left- and right-hand waveguides, will be greater than 1
if the edge condition is considered [19].

Fig. 6 compares the CPU time relative to the scattering
matrix computation needed for each technique with increas-
ing total mode number on an IBM Personal Computer with
an Intel-8087 arithmetic coprocessor, Three accessible modes
are assumed for each waveguide, which will satisfy most of
the interacting discontinuity problems. The difference, not
very significant for limited mode number, increases rapidly in
terms of the total number of modes. The same is true of the
computer memory space, which is another important factor
in programming on microcomputers and workstations.

The multimodal variational formulation has been applied
to a cascaded E-plane ridged waveguide discontinuity prob-
lem. We have compared our results with those calculated
and measured by Mansour et al. [17] in Fig. 7. Here 50
eigenmodes have been used in the rectangular waveguide
and 16 in ridged waveguide. By using five accessible modes
in the ridged waveguide and two in the rectangular one, we
obtain better agreement with the measurement.

A ridged waveguide resonator is mounted by introducing a
thick ridge in a below-cutoff waveguide. For a given ridge
length, the resonance occurs when the total effective length,
including the frequeney-dependent end effect, is equal to a
multiple of a half-wavelength. Fig. 8 shows that the three
first predicted resonant frequencies agree well with the mea-
surements carried out on an HP851O vector network ana-
lyzer. No resonance will be observed above 7.14 GHz, corre-
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spending to the cutoff frequency of the first mode in the
empty waveguide.

The treatment of inhomogeneous discontinuity problems is
illustrated by analyzing a finite-length dielectric obstacle in a
rectangular waveguide. The calculated input reflection coef-
ficient is compared with the measured value [39] in Fig. 9.
The agreement is very good with ten TEX modes of the
dielectric-loaded waveguide.

A PC-based microwave filter design package has been
developed with the multimodal variational formulation as
the main analysis tool, owing to its numerical advantages. An
optimization design has been taken for an eight-resonator
evanescent-mode ridged-waveguide low-pass filter with two
step transformers at the input and output terminals (Fig.
10(a)). About 6 h are required for the optimization proce-
dure on an 8 MHz personal computer when using a direct
search method [40]. The required filter performances are of
maximum 1.3 SWR in the 10.7 -12.7 GHz frequency range
and more than 60 dB rejection at 14 GHz, which has been
confirmed by the measurements (Fig. 10(b) and (c)). The
predicted filter performances are also given by taking into
account the influence of the number of accessible modes.
The convergence of the overall scattering parameters is
obtained with only three accessible modes, and five accessi-
ble modes are considered in the final analysis. The differ-
ence between the theoretical and measured results is due to
the imperfections in the realization, which are not yet taken
into account in our design package.

V. CONCLUSION

A unified multimodal variational formulation has been
described for uniaxial waveguide discontinuities characteri-
zation. Both homogeneous and inhomogeneous waveguide
discontinuity problems have been studied to illustrate the
numerical advantages of this approach, which derive from
the well-known “accessible” and “localized” modes. The
handling of matrices of reduced size allows the development

on the personal computer of such optimized computer-
aided-design packages as that used for evanescent-mode
ridged waveguide filters.
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